
 

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au 

 

 

Swinburne Research Bank  
http://researchbank.swinburne.edu.au 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He, Q.-Y., et al. (2012). Quantum dynamics in ultracold atomic physics. 
 

Originally published in Frontiers of Physics, 7(1), 16–30. 
 Available from: http://dx.doi.org/10.1007/s11467-011-0232-x 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
Copyright © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012. 

 
This is the author’s version of the work, posted here with the permission of the 
publisher for your personal use. No further distribution is permitted. You may also be 
able to access the published version from your library.  The definitive version is 
available at http://www.springerlink.com/. 

 
 



ar
X

iv
:1

11
2.

03
80

v1
  [

qu
an

t-
ph

] 
 2

 D
ec

 2
01

1

Quantum dynamics in ultra-cold atomic physics

Q. Y. He, M. D. Reid, B. Opanchuk, R. Polkinghorne, Laura E. C. Rosales-Zárate, P. D. Drummond
Centre for Atom Optics and Ultrafast Spectroscopy,

Swinburne University of Technology, Melbourne 3122, Australia

We review recent developments in the theory of quantum dynamics in ultra-cold atomic physics,
including exact techniques, but focusing on methods based on phase-space mappings that are appli-
cable when the complexity becomes exponentially large. These phase-space representations include
the truncated Wigner, positive-P and general Gaussian operator representations which can treat
both bosons and fermions. These phase-space methods include both traditional approaches using a
phase-space of classical dimension, and more recent methods that use a non-classical phase-space of
increased dimensionality. Examples used include quantum EPR entanglement of a four-mode BEC,
time-reversal tests of dephasing in single-mode traps, BEC quantum collisions with up to 106 modes
and 105 interacting particles, quantum interferometry in a multi-mode trap with nonlinear absorp-
tion, and the theory of quantum entropy in phase-space. We also treat the approach of variational
optimization of the sampling error, giving an elementary example of a nonlinear oscillator.

I. INTRODUCTION

Quantum dynamics is one of the most fundamental
problems in modern physics. This is because time-
evolution is the basis for any theoretical prediction. Yet
many-body complexity makes this an extremely challeng-
ing task in quantum systems. New theoretical meth-
ods are needed, and quantitative experiments with well-
understood interactions are vitally important in order to
test predictions. In this article, we review some recent
developments relevant to ultra-cold atomic physics.

Ultra-cold atoms provide an exceptionally simple and
well-understood physical environment, allowing quanti-
tative tests of dynamical theoretical predictions [1, 2].
Recent experiments explore temperatures below 1nK [3],
capable of demonstrating dynamical behavior in many-
body systems in new regimes. The important new feature
of these systems is that they allow isolated, macroscopic
quantum systems to evolve almost unitarily, with very
little coupling to external reservoirs. It is this feature of
these experiments which is highly unique, and not found
in most previous condensed matter experiments [4].

Features of recent experiments include [5]:

• Bose-Einstein condensates: atom ‘photons’

• Atom lasers, atomic diffraction, interferometers..

• Quantum superfluid fermions: atom ‘electrons’

• Universality: Strongly interacting fermions

• Superchemistry: Ultracold molecule formation

• Squeezed BEC: Spin-squeezing with spinor atoms

An important development is the growing ability of ex-
perimentalists to measure atomic correlations [6] and per-
form atom counting experiments with noise levels below
the standard quantum limit of Poissonian fluctuations.
A typical schematic picture is shown in Fig (1), which

Figure 1. Schematic diagram of atom counting experiments
using metastable Helium and multi-channel plate counters.

shows a magnetically trapped ultracold atomic cloud. Af-
ter a dynamical quantum collision of two Bose conden-
sates, the trap is turned off and atoms are counted by
the multi-channel plate (MCP) [7] below the trap.

As well as these atomic correlation experiments, other
experiments of interest include quantum collision [8] and
quantum interferometry experiments. In all these cases,
there is an external Hamiltonian which can be changed
non-adiabatically, leading to quantum dynamical evolu-
tion in the many-body system. This is obtained by ex-
ternally control of laser or magnetic fields.

Unlike traditional condensed matter environments,
these experiments are carried out in a high vacuum, us-
ing optical or magnetic trapping potentials. It is this
feature that allows these systems to evolve with almost
no contact with a heat reservoir. In summary, for the
first time in physics, we have large many-body quantum
systems capable of unitary evolution with a wide variety
of controlled interactions. This creates an unrivaled op-
portunity for testing calculations of quantum dynamics.

http://arxiv.org/abs/1112.0380v1
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II. GENERAL HAMILTONIAN

The Hamiltonian of the relevant ultra-cold atomic sys-
tems usually are rather simple, being comprised of well-
defined single-particle and interaction terms. Thus,

H = H0 +HI (2.1)

where H0 and HI are the non-interacting and interacting
parts of the Hamiltonian respectively, so that H0 is a
general linear Hamiltonian, given by:

H0 =
∑

ss′

ˆ

Ψ†
s (r)

[

Vss′r −
~
2δss′

2ms
∇2

]

Ψs′ (r) d
3r .

(2.2)
where Ψs (r) is a quantum field operator r with internal
spin or atomic species index s = 1, . . . S, where : . . . :
indicates normal ordering, and we use the Einstein sum-
mation convention for repeated indices [9]. In addition,
ms is the mass of species s, Vss′r is a local potential, and
HI describes particle-particle interactions with interac-
tion potential Uss′rr′ :

HI =
1

2

∑

ss′

ˆ ˆ

: |Ψs (r)|2 Uss′rr′ |Ψs′ (r
′)|2 : d3rd3r′ .

(2.3)
It is convenient to introduce local mode operators to

treat such quantum field equations[10]. We describe this
here for definiteness, although a more general mode ex-
pansion can be used. We introduce M = SM3 fermionic
or bosonic annihilation operators ã = (ãks) in momen-
tum space, labelled by momentum (k = ∆kj) and spin
(s). Here we assume periodic boundaries in a finite vol-
ume V = L3, and a lattice of M3 cells, with momentum
spacing of ∆k = 2π/L in each coordinate. Localized an-
nihilation and creation operators an on a spatial lattice
of position indices rn, with cell volume ∆V = V/M3, are
defined using a discrete Fourier transform:

an =
1

M3/2

∑

k

ãks exp

[

2πik · n
∆kM

]

(2.4)

The combined index n is a spin-space 4-vector, n ≡ (n, s).
In the case of bosonic (fermionic) fields, the commutators
(anticommutators) are defined as:

[

am, a
†
n

]

±
= δ4mn

[am, an]± = 0 . (2.5)

The corresponding local number operator is Nm =
a†mam. The continuum Hamiltonian is regained in the
limit of a large number of lattice sites of the resulting
Hubbard type model Hamiltonian:

H(a†,a) = lim
∆V→0

~

∑

nn′

[

ωnn′a†nan′ +
1

2
χnn′ : NnNn′ :

]

.

(2.6)

In the uniform case, the hopping matrix ωnn′ is

ωnn′ =
~

2ms

∑

k

k2 exp

[

2πik · (n− n′)

∆kM

]

δss′ (2.7)

and the interaction matrix χmn is (approximately):

~χnn′ = Uss′rnrn′ .

While this is introduced here as an approximation to a
continuum system, it is also experimentally feasible to
use an optical lattice [11, 12] to engineer the hamilto-
nian directly, so that each spatial index coincides with
a local trapping potential well. In this way one can ob-
tain a physical system directly corresponding to the fa-
mous Hubbard model of condensed matter [13], except
that it does not involve the numerous approximations
that would be required in a typical condensed matter
setting. In the following calculations, we will assume
for simplicity that the interaction is local in space, with
χnn′ = χss′δ

3
nn′ ; although this is not essential.

A. Exponential complexity

The central issue that makes quantum dynamical cal-
culations difficult in many body quantum physics is the
issue of exponential complexity [14]. For example, if
we consider N bosons distributed among M modes, the
number of distinct orthogonal quantum states is obtained
by combinatorics: how many ways can we divide the
particles amongst the modes? The number of quantum
states is then simply:

NB =
(M +N − 1)!

(M− 1)!N !
(2.8)

To give relevant numbers, suppose we consider num-
bers that are approximately typical of many ultra-cold
atom experiments, with N = M = 500, 000. One finds
that:

NB ≈ 22M ≈ 10300,000 (2.9)

With fermions, we have fewer states, since each mode can
have an occupation number of 0 or 1, meaning that:

NF ≈ 2M ≈ 10150,000 (2.10)

In either case, there are more linear equations to solve
than atoms in the universe. By comparison, the number
of classical equations would be

NC = 2M = 106 (2.11)

While the classical problem is difficult, it is soluble on
many current digital computers. The quantum problem,
on the other hand, is nearly impossible to treat. In par-
ticular, one can’t diagonalize the Hamiltonian, which is
now a 10300,000 × 10300,000 matrix in the bosonic case.
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III. EXACT DYNAMICS

If there are small numbers of modes, one can indeed
obtain exact eigenvectors. In this case it is possible to
diagonalize the Hamiltonian, and obtain the eigenvectors
and eigenvalues for a small number of particles, typically
in the range 10 − 100. As an example, we consider the
generation of entanglement through four-mode nonlinear
dynamics in two-well trap holding a two-species BEC sys-
tems, in which the nonlinearity enters through S-wave
scattering interactions [15]. The basic interaction that
generates entanglement in the first place is the nonlinear
S-wave scattering interaction, which we consider to be an
interaction between two spin-states in 87Rb. The two spin
states labeled i = 1, 2 are |1〉 ≡ |F = 1, mF = +1〉, |2〉 ≡
|F = 2, mF = −1〉, and there are two spatial modes cor-
responding to optical trapping of modes labeled a, b for
clarity. Thus, S = 2, M = 2 and M = SM = 4. With
such a small number of modes there is no exponential
complexity issue, and the Hamiltonian can be exactly di-
agonalized using numerical techniques.

The Hamiltonian for the coupled system is:

H/~ = ω
∑

i

a†i bi +
1

2





∑

ij

χija
†
ia

†
jajai



+ {ai ↔ bi} .

(3.1)
Here ω is the inter-well tunneling rate between the two
wells with localized modes ai, bi while χij is the intra-
well interaction matrix between the different spin com-
ponents.

We can solve this using either Schroedinger or Heisen-
berg equations of motion. To illustrate this, suppose that
ω = 0, and we have just one well. In the Heisenberg case,
one obtains:

dai
dt

=
i

~
[H, ai]

= −i
∑

j

χijNjai. (3.2)

Since the number of particles is conserved in each
mode, this has the solution:

ai (t) = exp



−i
∑

j

χijNjt



 ai (0) (3.3)

More generally, it is convenient to use a matrix ex-
pansion of the Hamiltonian in a number-state basis. For
dynamics, we explicitly assume that a1, b1 and a2, b2
are initially in coherent states. This models the relative
coherence between the wells obtained with a low inter-
well potential barrier, together with an overall Poissonian
number fluctuation as typically found in an experimen-
tal BEC. We note that the coherent state also includes
an overall phase coherence, which has no effect on our
results. For simplicity, we suppose that the initial state
is prepared in an overall four-mode coherent state using
a Rabi rotation: |ψ >= |α >a1 |α >b1 |α >a2 |α >b2 .

Next, we assume that the inter-well potential is in-
creased so that each well evolves independently. Finally,
we decrease the inter-well potential for a short time, so
that it acts as a controllable, non-adiabatic beam-splitter
[16], to allow interference between the wells, followed by
independent spin measurements in each well.

A. Squeezed and entangled states produced by

double-well BEC

We now use the techniques given above to investi-
gate a particular dynamical strategy for generating EPR
entanglement. The technique treated here is generally
along the lines investigated experimentally in fibre-optics,
by comparison with squeezing and entanglement experi-
ments in optical fibers [17–19]. An important difference
is that the fiber experiments use time-delayed pulses to
eliminate interactions between the components. This is
not readily feasible in BEC experiments, although Fesh-
bach resonances can achieve this to some extent.

Let a1,a2 be operators for two internal states in the A
well and b1 , b2 operators for two internal states at the

B well. NA = a†2a2 + a1a1 and NB = b†2b2 + b†1b1 are
the atom number operators of these modes in each well.
We define Schwinger spin operators at each site for the
measurement of the EPR paradox and entanglement. We
define general, phase-rotated spin components according
to:

JA
x =

(

a†2a1e
i(θ2−θ1) + a1a2e

−i(θ2−θ1)
)

/2 ,

JA
y =

(

a†2a1e
i(θ2−θ1) − a1a2e

−i(θ2−θ1)
)

/2i ,

JA
z =

(

a†2a2 − a1a1

)

/2 (3.4)

at A and similar definition at B, while ∆θ = θ2 − θ1 is
the phase shift between mode 1 and mode 2.

We the select the phase shift to make sure 〈Jy〉 6= 0.
The Schwinger spin operators orthogonal to Jy are given
as J(θ) = cos(θ)Jz + sin(θ)Jx, all of which have the
property 〈J(θ)〉 = 0. We define ∆θ = π/2 − α where α

is time dependent, such that 〈a†2a1〉 = |〈a†2a1〉|eiα. This
plane contains an infinite family of maximally conjugate
Schwinger spin operators, generally given by J(θ) and
J(θ + π/2) which obey the uncertainty relation

∆2J(θ)∆2J(θ + π/2) ≥ |〈Jy〉|2/4 . (3.5)

Thus a state which obeys

∆2J(θ) < |〈Jy〉|/2 < ∆2J(θ + π/2) (3.6)

is a squeezed state, as shown in the Fig. 2. Here, we
have optimized the phase choice θ to get the best squeez-
ing of the Schwinger spin operators by the criterion that
∂∆2J(θ)/∂θ = 0, hence obtaining

tg(2θ) = 2〈Jz, Jx〉/(∆2Jz −∆2Jx). (3.7)
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Figure 2. Squeezing of Schwinger spin operators
10log10

(

∆2Jθ/n0

)

(solid), 10log10
(

∆2Jθ+π/2/n0

)

(dashed),
and shot noise level n0 = |〈Jy〉|/2 (dash-dotted) via BEC
with number of Rb atoms. Here the parameters correspond
to Rb atoms at magnetic field B = 9.131G, with scatter-
ing lengths a1 = 100.4a0, a22 = 95.5a0, and a1 = 80.8a0.
a0 = 53pm. The coupling constant χij ∝ 2ω⊥aij . Here
NA = 200, τ = χ11NAt.

In this strategy, spin-squeezing at each site can be
readily obtained, by unitary evolution from an initial
coherent state, under the local Hamiltonian. Then we
can obtain sum and difference spins between two sites:
∆2JAB

θ± = ∆2(JA
θ −JB

θ ) and ∆2JAB
(θ+π/2)± = ∆2(JA

θ+π/2+

JB
θ+π/2), prior to using the beam-splitter - which is

achieved by a modulation of the inter-well potential, as
shown in Fig. 3(a).

After using the beam-splitter, entanglement can be de-
tected via spin measurements using the spin version of
the Heisenberg-product entanglement criterion [18]

Eproduct =
2
√

∆2JAB
θ± ·∆2JAB

(θ+π/2)±

|〈JA
y 〉|+ |〈JB

y 〉| < 1 , (3.8)

or the sum criterion [20]

Esum =
∆2JAB

θ± +∆2JAB
(θ+π/2)±

|〈JA
y 〉|+ |〈JB

y 〉| < 1 . (3.9)

as shown in Fig. 3(b).

While diagonalization is possible for even larger parti-
cle numbers, the two-mode approximation becomes less
and less reliable. For larger numbers of particles the in-
teraction energy becomes as large as as the harmonic
oscillator mode spacing. This means that few mode
approximations become inapplicable, and the problem
quickly develops exponentially large numbers of many-
body states. Methods for treating this more general case
are given in the next section.
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Figure 3. (a) Squeezing of Schwinger spin operators
SdB: S+ = 10 log10

[

∆2(JA
θ − JB

θ )/n0

]

(solid), S− =

10 log10
[

∆2(JA
θ+π/2 + JB

θ+π/2)/n0

]

(dashed), and n0 =

(|〈JA
y 〉| + |〈JB

y 〉|)/2 is shot noise (dash-dotted). (b) Entan-
glement (Eproduct) based on the criterion (3.8) by the solid
curve and Esum in sum criterion (3.9) by the dashed curve.
(This figure has been published in Ref. [15])

IV. CLASSICAL PHASE-SPACE

Early techniques for calculating the dynamics and
thermal equilibrium states of large quantum systems used
techniques based on mappings to a classical phase-space
[21]. These were used not just in statistical many-body
theory, but also in applications involving coherence the-
ory and lasers. The most widely used methods of this
type are the Wigner representation[22] and the Glauber-
Sudarshan [23, 24] P-representations. These differ in
some technical details. In essence, both can be used for
mapping second-quantized bosonic fields to a classical
phase-space. However, the Wigner representation cor-
responds to symmetrically-ordered operator mappings,
while the P-representation corresponds to normal order-
ing. It is also possible to use an anti-normal ordered
mapping, called the Husimi Q-function [25], but this is
less commonly used for dynamical calculations. When
used for quantum fields, in a truncation approximation
described below, these types of phase-space method are
sometimes called c-field techniques. Phase-space meth-
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ods for quantum fields were used to predict quantum
squeezing in solitons in fiber optics [26–30], with an ex-
cellent agreement with subsequent experimental tests[31–
33]. They were later applied to ultra-cold atomic BEC
dynamics [34], and have been widely used, especially at
finite temperatures [35, 36].

A. Glauber-Sudarshan P-representation

This approach uses an overcomplete set of coherent
states [37, 38], parameterized by a complex vector α:

|α〉 = exp
[

a† ·α−α∗ · α/2
]

|0〉 (4.1)

and one then obtains an expansion for the density matrix
in the form:

ρ =

ˆ

P (α)Λ1 (α) d2Mα (4.2)

where Λ1 (α) is a diagonal coherent state projection op-
erator, which is the basis for the expansion, defined as:

Λ1 (α) = |(−)α〉 〈α| (4.3)

Here we note that the same expansion can be used for
either fermions of bosons. In the case of fermions, α is a
Grassmann variable[9], and one must use the bracketed
minus sign in Eq (4.3). This representation generates
normal-ordered operator products, in the sense that mo-
ments of P (α) correspond directly to expectation values
of normally ordered operator products.

The advantage of this approach is that it maps quan-
tum states into M complex coordinates, α = p+ ix, and
hence only has classical complexity. Another advantage
is that the use of normally-ordered products means that
there is no UV vacuum divergence in the expectation
values. However, for many quantum states, including all
entangled states, the distribution is not positive, and in-
deed is highly singular.

In the bosonic case, the operator basis can be written
in an alternative form [39], as:

Λs(λ) =

[

2

1 + s

]M

: exp
[

−2δa†δa/ (1 + s)
]

: , (4.4)

where δa = a−α , δa† = a† −α∗ are relative displace-
ments, and s indicates the operator ordering [40]. Here
s = 1 is used for normal ordering, as in the case of the
P-representation, and other orderings are treated in the
next subsection. This allows us to recognize that the ba-
sis is just a Gaussian function of the mode operators: an
exponential of a quadratic function of annihilation and
creation operators. Just as with similar Gaussian bases
for ordinary complex functions, such an operator basis
has more than one possible form, obtained by changing
the variance.

B. Wigner-Moyal phase-space

An even older phase-space method was developed by
Wigner [22], who treated thermal equilibrium problems,
and Moyal [41], who extended this to a full dynamical
equivalence with quantum mechanics. This can also be
written as an expansion over a Gaussian operator ba-
sis with symmetric ordering mappings, so that O = 0 .
This reduces the basis variance, and therefore increases
the variance of the distribution function. Formally, the
expansion is written as:

ρ =

ˆ

W (α)Λ0 (α) d2Mα (4.5)

This type of distribution generates symmetrically or-
dered operator products. It maps quantum states into
M complex or 2M real coordinates, and has the advan-
tage that this mapping gives dynamical equations that
are the most similar to classical behavior. Historically,
Moyal first showed how to map quantum operators into
differential equations, and had a famous correspondence
with Dirac, who objected to the fact that the distribution
had no probabilistic interpretation.

As result, there is a problem for computational imple-
mentation. One would like to sample the Wigner distri-
bution probabilistically, but this is not always possible.
Since the mapping is nonpositive, there is no generally
efficient and accurate sampling procedure. The repre-
sentation is also typically UV divergent in three dimen-
sions, due to vacuum field fluctuations of symmetrically
ordered moments.

For the case of an initial coherent state,

|Ψ0〉 = |α0〉 (4.6)

the initial Wigner distribution is Gaussian and posi-
tive, so that the quantum noise can be readily sampled
stochastically, with:

α = α0 + δα0 (4.7)

where δα0 is a Gaussian random complex number, such
that the only nonvanishing correlations are:

〈δα0δα
∗
0〉 =

1

2
. (4.8)

For more general states - even as simple as a num-
ber state - the Wigner distribution exists but has no
stochastic equivalent. The quantum dynamical manifes-
tation of this problem is that one obtains a third-order
Fokker-Planck equation for the Wigner time evolution
when there are nonlinear Hamiltonian terms. Such an
equation has no stochastic equivalent, unless truncated
to give a second order differential equation. In this ap-
proximation, the resulting equation has a semi-classical
form, with:

i
dαm

dt
=

∑

n

[

ωmnαn + χmn |αn|2 αm

]

(4.9)
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While apparently classical, this equation includes quan-
tum noise in the initial conditions, and can simulate non-
classical entangled states, in an approximation which is
valid in the limit of large mode occupations

It was the nonpositivity of the Wigner representation
that led Feynman to make his famous conjecture[14] that
it was not possible to use a classical or digital computer to
make a probabilistic representation of a quantum system.
Nevertheless, while not exact, the truncated Wigner ap-
proach is relatively simple, and has useful applications as
a practical approximation when mode occupation num-
bers are large.

We note that the Husimi Q-function [25], which corre-
sponds to antinormal ordering with O → −1, is always
positive. Yet, paradoxically, this has no direct stochastic
equivalent either, since the corresponding Fokker-Planck
equation is not positive-definite. As we show in the
next section, despite Feynman’s remark, there are routes
to positive representations of quantum systems that do

have stochastic equivalents, but they involve enlarged,
non-classical phase-space mappings.

C. Large-scale two-component atom interferometry

As an illustration of the Wigner phase-space tech-
niques, consider interferometry of a two-component 87Rb
BEC in a harmonic trap, which is performed by many
experimental groups worldwide. Atom numbers in these
experiments range from 104 to 106, which makes it im-
possible to simulate the behavior of the system exactly
in a few mode approximation: these larger traps are in-
herently multi-mode. A common approach involves the
propagation of semi-classical Gross-Pitaevskii equations
[21]. Although these equations provide a good descrip-
tion of the condensate evolution, they do not account for
quantum effects in the cloud, and cannot predict vari-
ances of the observables. A truncated Wigner phase-
space approach can be used to obtain more accurate pre-
dictions [42–44].

The effective Hamiltonian in three dimensions is

H/~ =
∑

ss′

ˆ

d3x
{

Ψ†
sKss′Ψs′ +

χss′

2
Ψ†

sΨ
†
s′Ψs′Ψs

}

,

(4.10)
where Ψs is an annihilation operator for spin s, with the
space position omitted for brevity, and χss′ is the spin-
dependent contact interaction strength. The operator
Kss′ is the single-particle Hamiltonian:

Kss′ =

(

− ~

2m
∇2 + ωs + Vs(x)/~

)

δss′+Ω̃ss′(t), (4.11)

where m is the atomic mass, Vs is the external trapping
potential for spin s, ωs is the internal energy of spin s,
Ω̃ss′ is the time-dependent coupling term. Losses, which

can play a significant part in the evolution, can be in-
cluded into the model by adding a loss term to the master
equation [45]:

dρ

dt
= − i

~
[H, ρ] +

∑

n,l

κ
(p)
l

ˆ

dDxL(p)
l

[ρ] , (4.12)

where p is the number of the interacting particles in the
loss process, the vector l specifies the number of particles
with each spin participating in the interaction, and L is
the operator functional:

L(p)
l

[ρ] = 2O
(p)
l
ρO

(p)†
l

−O(p)†
l

O
(p)
l
ρ−ρO(p)†

l
O

(p)
l
. (4.13)

The reservoir coupling operators O
(p)
l

are the distinct p-
fold products of local field annihilation operators,

O
(p)
l

= O
(p)
l

(Ψ) = Ψl1(x)Ψl2(x) . . .Ψlp(x), (4.14)

describing local collisional losses.
After a transformation to the Wigner representation

using functional Wigner correspondences [43] and trun-
cation of high-order terms, the resulting equations take a
form similar to that of coupled GPEs with the addition
of stochastic terms [36]:

dφs(x)

dt
= −i

∑

u

(

Ksuφu + Usu|φu|2φs
)

− Γs(x) +
∑

p,l

β
(p)
l,s ζ

(p)
l

(x, t), (4.15)

where φs(x) is a Wigner c-field corresponding to the op-
erator field Ψs(x). Additionally, Γs is the nonlinear loss

term and β
(p)
l,s is the damping noise coefficient which are

both functions of the Wigner fields, while ζ
(p)
l

(x, t) is a
corresponding complex, stochastic delta-correlated Gaus-
sian noise such that:

〈

ζ
(p)
l

(x, t)ζ
(p′)∗
k

(x′, t′)
〉

= δlkδpp′δD (x− x′) δ (t− t′) .

(4.16)
These stochastic equations can be solved numerically

using conventional methods on a discrete lattice. The re-
sulting equations then have a similar form to the general
lattice Wigner equations, Eq (4.9), apart from additional
loss and noise terms:

dαm

dt
= −i

∑

n

[

ωmnαn + χmn |αn|2 αm

]

− Γm +
∑

p,l

β
(p)
l,s ζ

(p)
l,m(t), (4.17)

Correlations of any order can be extracted, and specif-
ically, one can obtain the value of squeezing parameter
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Figure 4. Wigner simulations of squeezing in the vicinity of
9.1G Feshbach resonance in 87Rb plotted with a logarithmic
scale SdB = 10 log10(ξ

2). Inter-component scattering lengths:
a1 = 80.0 a0 (blue solid line), a1 = 85.0 a0 (red dashed line),
a1 = 90.0 a0 (green dash-dotted line) and a1 = 95.0 a0 (black
dotted line).

ξ2. This serves as an indicator of entanglement in the
condensate [46, 47]:

ξ2 =
N∆S2

min

〈S〉2 , (4.18)

where N is the number of atoms, S is the total spin, and
∆S2

min is the minimal variance of spin over all possible
directions. The squeezing parameter is a fourth-order
field correlation, with values ξ2 < 1 indicating entangled,
or spin squeezed states. By simulating the evolution of
the condensate under different conditions one can find
the optimal regime for producing maximum squeezing.

For example, the inter-component scattering length
of optically trapped two-component 87Rb condensate of
states |F = 1, mF = +1〉 and |F = 2, mF = −1〉 near a
Feshbach resonance at 9.1G can be changed by varying
the strength of magnetic field. When one moves closer to
the resonance, the inter-component scattering length de-
creases, providing better squeezing, but inter-component
losses increase correspondingly [48], eliminating the co-
herence faster. Fig (4) shows the evolution of squeezing
parameter in time for four different values of a1, where
best results are achieved for a1 = 90 a0. In other words,
one has to pick an optimal but non-zero detuning from
the Feshbach resonance in order to get maximum squeez-
ing.

V. NON-CLASSICAL PHASE-SPACE

We generically regard any expansion of the density ma-
trix in a complete, non-orthogonal basis set with contin-
uous variables as a phase-space method. Such methods
are not restricted to classical mappings, however. In
the following sections, we review progress in develop-
ing non-classical phase-space mappings, typically using
higher than classical dimensionality. This approach is
essentially a middle ground between the low complex-

ity of classical phase-space, and the exponentially large
complexity of the full many-body Hilbert space.

A. Positive-P function methods

In this approach, one extends the mapping of a
bosonic field theory onto classical phase-space used in the
Glauber-Sudarshan P-function, to a larger phase-space of
double the classical dimension. This is best thought of
as a minimal prescription for including coherent state su-
perpositions and entanglement into the basis set. Thus,
one defines:

ρ =

ˆ

P+(α,β)Λ+ (α,β) d2Mαd2Mβ (5.1)

where the basis set is now:

Λ+ (α,β) =
|α〉 〈β∗|
〈β∗| |α〉 (5.2)

This enlarged phase-space allows positive probabilities
for any quantum state, since it is possible to prove an
existence theorem that any physical density matrix has
a positive distribution in this form. While this itself is
no different to the properties of the Husimi Q-function
- another positive representation - there are additional
advantages, as we explain below. In comparison to the
usual diagonal Glauber-Sudarshan case, we note that the
+P representation has these differences:

• It now maps quantum states into 4M real coordi-
nates: α,β = p+ ix, p′ + ix′

• The corresponding phase-space has double the di-
mensionality of a classical phase-space

• The advantage is that one can represent superposi-
tions including entangled states without singulari-
ties.

B. +P Existence Theorem

The most significant property of the +P method is
the existence theorem: a positive P-function always ex-
ists, for any density matrix. While the proof is too
lengthy to be given here, we quote the result, which
has a simple constructive form [49]. For any hermitian,
positive-definite density matrix ρ, there is a correspond-
ing positive-P distribution, of ‘canonical’ form:

P+(α,β) =

[

1

4π2

]M

e−|α−β∗|2/4

〈

α+ β∗

2

∣

∣

∣

∣

ρ

∣

∣

∣

∣

α+ β∗

2

〉

(5.3)
The advantage here is not just that the distribution

is nonsingular, but more importantly that probabilistic
sampling is possible. This is a crucial issue when dealing
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with the complexity of many-body systems. Generally,
random, probabilistic sampling is the only practical ap-
proach for subduing the unruly nature of an exponen-
tially complex Hilbert space.

This approach nevertheless is not without its own prob-
lems. The use of a non-orthogonal basis means that the
distribution is non-unique. We can choose a compact
form - like the ‘canonical’ positive form given above -
as an initial condition. However, this form is generally
not conserved by the equations of motion, since it is not
unique. If the equations of motion generate distributions
that are less compact as time evolves, the this allows
sampling errors to grow with time.

An important application of the +P distribution is the
calculation of measurable operator moments. In order to
calculate an operator expectation value, there is a corre-
spondence between the moments of the +P distribution,
and the normally ordered operator products. These come
directly from the fact that coherent state are eigenstates
of the annihilation operator, and that Tr [Λ+(α,β)] = 1,
which means that any normally ordered operator prod-
uct is simply a stochastic average of the phase-space vari-
ables:

〈a†m · · · an〉 = Tr
[

· · ·anΛ+(α,β)a
†
m, . . .

]

(5.4)

=

ˆ ˆ

P+(α,β)[βm · · ·αn]d
2Mα d2Mβ

C. +P time-evolution

The route to obtaining time-evolution equations is to
map operator equations into differential equations for the
P-function. Differentiating the +P projection operator
gives the following four identities:

a†mΛ =

[

∂

∂αm
+ βm

]

Λ

amΛ = αmΛ

Λam =

[

∂

∂βm
+ αm

]

Λ

Λa†m = βmΛ (5.5)

Since the projector is an analytic function of both αm

and βm, we can obtain alternate identities by replac-
ing ∂/∂α by either ∂/∂αx or ∂/i∂αy. This equivalence
allows a positive-definite diffusion to be obtained, with
stochastic evolution. The result of this procedure is that
our exponential complex quantum problem is now trans-
formed into a stochastic equation. Thus, for the case of a
single-component Bose gas with S-wave interactions, one
obtains the following equations in the simplest case:

i
dαm

dt
= ωmnαn +

[

χαmβm +
√

iχ ξ(1)m (t)
]

αm(5.6)

−idβm
dt

= ωmnβn +
[

χαmβm +
√

−iχ ξ(2)m (t)
]

βm

Here ξ
(i)
m (t) are 2M independent real, random Gaus-

sian noise terms, with correlations given on a discrete
spatial lattice with cell volume ∆V , by:

〈

ξ(i)m (t) ξ
(i′)
m′ (t′)

〉

=
1

∆V
δmm′δii′δ (t− t′) . (5.7)

Similar techniques can also be used for the case of
fermions, using the Gaussian representation method,
with some modifications which are not treated in detail
here. In both cases, the essential trade-off is that, as with
any sampling technique, many parallel trajectories are
needed to control growing sampling errors. This can be
modified by changing the choice of basis, and the stochas-
tic mapping which is not unique. This approach leads to
the idea of a ‘stochastic gauge’[50], which multiplies the
basis operator Λ+ by a random weight Ω, and improves
convergence properties by reducing the sampling error.

We emphasize that while any stochastic method only
converges for a large number of samples, the sampling
error is generally a well-controlled numerical error. Like
the momentum cut-off, the sample-size can be changed
and the error monitored using well-defined numerical pro-
cedures.

D. Time-reversal tests

We now consider two examples of the application of
the +P distribution to quantitative simulations of time-
evolution under our Hubbard-type Hamiltonian.

By choosing a modified stochastic gauge, it is possible
to simulate a very large number of bosons, and verify
the simulation by carrying out a time-reversal test. This
takes advantage of the fact that unitary evolution is time-
reversible, so that changing the Hamiltonian sign will
cause a reverse evolution to occur, which should recreate
the initial state. Such tests have been carried out with
up to 1023 interacting bosons[51]. In Fig (5), we show a
time-reversal test carried out for the single mode anhar-
monic oscillator with an initial coherent state of α = 10,
and a corresponding mean initial population of N = 100
bosons. The quantity graphed is the mean quadrature
variable, defined as X =

(

a+ a†
)

/2. The Hamiltonian
sign was changed at τ = 0.5 , resulting in a restoration
of the initial coherence.

This calculation also demonstrates a subtle feature of
the +P stochastic method, which is that the phase-space
distribution is not unique! In fact, a moment’s thought
serves to illustrate that this is a necessary feature of a
stochastic method that represents unitary evolution in
quantum mechanics. If the mapping has stochastic be-
havior during the time-evolution, then it will spread in
the phase-space as time evolves. Technically, the phase-
space entropy must increase.
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Figure 5. Time-reversal test of anharmonic oscillator with
N = 100 initial bosons in a coherent state. The shaded ar-
eas for τ > 0.5 indicate a slowly growing sampling error-bar,
calculated using the central limit theorem and the sampled
variance.

Figure 6. Phase-space distributions, showing non-uniqueness
after time-reversal at normalized time τ = 0.5. The horizontal
axis is a product of the phase-space coordinate α and the
random stochastic weight Ω.

Yet reversing time simply results in another type of
unitary evolution, also with a stochastic equivalent. The
result is that the phase-space distribution spreads even
more, increasing the phase-space entropy yet further.
This is illustrated in Fig (6), which graphs the distri-
bution underlying the mean quadratures depicted in Fig
(5). Clearly, the final distribution after time-reversal is
totally different from the initial distribution, which is a
delta-function in phase-space. The final distribution af-
ter time-reversal is a Gaussian convolution of the original
delta-function. Despite this, the two distributions are
physically identical, and have identical observable mo-
ments due to the non-uniqueness of the basis set.
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Figure 7. Schematic diagram of a BEC collision. A second
condensate is produced in situ by a Bragg scattering pulse,
with a relative velocity of 2vQ, causing a quantum collision.
This results in quantum correlated atoms scattering into a
spherical shell of velocities around the original mean velocity.

E. BEC collision: 105 bosons, 106 spatial modes

Next we consider a case of extremely large complexity:
a collision of two Bose condensates, each with a very large
number of particles and modes.

Recent experiments on ultra-cold Bose-Einstein con-
densates have been able to generate collisions of quantum
condensates with large numbers (> 105) of particles[8].
These experiments typically use metastable 4He∗ con-
densates so that he particle correlations can be readily
measured. The initial state is simply a trapped BEC
in which half the atoms have been accelerated to a high
relative velocity compared to the other half using op-
tical Bragg scattering techniques, as shown in Fig (7).
Atoms collide to produce a scattered halo of correlated
atoms, involving both spontaneous and stimulated emis-
sion into the scattered modes. These quantitative experi-
ments provide a rigorous test of the methodology of these
simulations.

We consider the collision[52] of two pure 23Na BECs,
with a similar design to a recent experiment at MIT[53],
and more recent experiments in France[54]. A 1.5 × 105

atom condensate is prepared in a cigar-shaped magnetic
trap with frequencies 20 Hz axially and 80 Hz radially.
A brief Bragg laser pulse is used to coherently impart a
velocity of 2vQ = 19.64 mm/s to half of the atoms, that
is much greater than the sound velocity of 3.1 mm/s. At
this point the trap is turned off so that the wavepackets
collide freely.

The coupling constant g depends on the s-wave scat-
tering length a (2.75nm in the case of 23Na). We be-
gin the simulation in the center-of-mass frame at the
moment the lasers and trap are turned off (t = 0).
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Figure 8. Comparison of truncated Wigner and +P simu-
lations, for total scattered particle density in velocity space
at a given final velocity. While the +P results agree with
experiments, the results show unphysical negative densities
and ‘ghost’ scattering events in the approximate truncated
Wigner approach. In these simulations, space is discretized
onto a 432 × 50 × 50 lattice with kx,max = 1.4 × 107/m and
ky,z,max = 6.2× 106/m, giving 106 modes in total, with phys-
ical parameters given in the text.

The initial wavefunction is modeled as the coherent-
state mean-field Gross-Pitaevskii (GP) solution of the
trapped t < 0 condensate, but modulated with a fac-
tor

[

eikQx + e−ikQx
]

/
√
2 which imparts initial velocities

vx = ±vQ = ±~kQ/m in the x direction.

Collisions have been calculated for up to 106 modes
and 105 interacting bosons[55]. This is a clearly expo-
nential regime, yet the +P technique is definitely appli-
cable. There are restrictions on the interaction density
and total time duration possible before the sampling er-
ror is too large, but useful results are certainly obtain-
able, as shown in Fig (8). We emphasize that sampling
error, while easily estimated, is not easily reduced at long
times due to a rapid growth in the distribution variance,
which eventually makes these simulations impractical.

By comparison, with the same parameters the trun-
cated Wigner method clearly fails to produce physically
sensible results. There is an uncontrolled error leading
to a completely unphysical depletion of the vacuum at
large relative velocity, causing apparently negative parti-
cle densities which of course cannot occur. This depletion
leads to ‘ghost’ particles scattering into low-velocity re-
gions near the original condensate velocity, which do not
correspond to any real physical events.

While the +P simulation produces physically sensible
results up to the time when sampling errors are too large
to be useful, the truncated Wigner approach is liable to
generate completely unphysical behavior. This is due to
the fact that in a three-dimensional quantum field simu-
lation, there are a diverging number of unoccupied high-
momentum modes in the limit of high momentum cutoff.
These contradict the basic high-occupation number ap-
proximation inherent in the Wigner truncation.

In summary, the advantages and disadvantages of
the +P approach are that it treats exponentially large
Hilbert spaces without mean-field or factorization as-
sumptions, including either unitary or non-unitary

damped evolution. No truncation of the equations of mo-
tion is required , and there is no UV divergence at large
k-value. However, for unitary evolution, and especially
for strong interactions, the sampling error grows in time.
This is intrinsic to the stochastic method, which leads
to solutions have relatively large tails. From the funda-
mental existence theorem, there are known solutions that
are strongly bounded with small sampling errors, but one
must use different simulation techniques to access these
solutions.

VI. GAUSSIAN REPRESENTATION

The Gaussian phase-representation is a more general
phase-space representation than either the Wigner or
positive-P method. In fact, it includes these as spe-
cial cases, and extends the phase-space idea to include
fermions [56, 57]. Here we consider a general number-
conserving Gaussian operator basis, in which any den-
sity matrix ρ is expanded in terms of Gaussian opera-
tors, Λ(λ), defined as exponentials of quadratic forms.
In order to define the Gaussian operators, we con-
sider a bosonic or fermionic quantum field with an M -

dimensional set of mode operators a† ≡
[

a†1, a
†
2, . . . a

†
M

]

.

In the bosonic case, we can define δa = a − α and
δa† = a† − β as operator displacements, where in gen-
eral α and β† are independent complex vectors. In the
fermionic case we set these displacements to zero. The
annihilation and creation operators satisfy (anti) com-
mutation relations, with (+) for fermions and (−) for
bosons:

[

ai,a
†
j

]

±
= δij . (6.1)

The expansion of the density matrix is:

ρ =

ˆ

P (λ)Λ(λ)dλ , (6.2)

where P (λ) is the probability density over the phase-
space, λ is the complex vector parameter of the Gaus-
sian representation , dλ is the integration measure, and
Λ(λ) is a Gaussian operator, defined as a normally or-
dered exponential of a quadratic form of annihilation and
creation operators:

Λ(λ) =
1

N Λu (λ) =
1

N : exp
[

−δa†µδa
]

: (6.3)

Here, µ is a complex M ×M matrix, so that the repre-

sentation phase space is λ =
[

α,β,µ
]

. N = Tr [Λu(λ)]
is a normalizing factor, and : : indicates normal ordering.
The normalizing factor has two forms, for bosons and
fermions respectively:

Nb = det
[

µ
]−1

Nf = det
[

2I − µ
]

. (6.4)
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The matrix µ is related to the stochastic Green’s func-
tion n as:

nb = µ−T − I

nf =
[

2I − µ
]−T

. (6.5)

In either case, the stochastic average of n over the dis-
tribution P is physically a normally ordered many-body
Green’s function, so that:

〈

a†iaj

〉

= 〈nij + βiαj〉P . (6.6)

Similar methods to the positive-P approach can then
be used for calculating time-evolution. These have
been used very successfully in treating, for example, the
ground state of the fermionic Hubbard model [58] - a
problem of much interest in condensed matter physics.

A. Linear entropy

Entropy is a measure of loss of information and entan-
glement in a quantum system, and it is important to have
a method of sampling a phase-space distribution in order
to estimate the entropy. Here we show that the Gaussian
phase-space method is well-suited to this type of calcu-
lation. In particular, the linear or Renyi entropy[59], is
defined as:

S2 = − lnTr
(

ρ2
)

. (6.7)

This has similar properties to the usual logarithmic en-
tropy, and measures state purity, since S2 = 0 for a pure
state, while S2 > 0 for a mixed state. The Renyi entropy
in a phase-space representation can be written using Eq.
(6.7) and the expansion of the density matrix Eq. (6.2)
as:

S2 = − ln

¨

P (λ)P (λ′)Tr (Λ(λ)Λ(λ′)) dλdλ′ . (6.8)

In order to obtain an expression of the linear entropy
using the Gaussian phase-representation is necessary to
evaluate the inner products of Gaussian operators of form
Tr (Λ(λ)Λ(λ′))[60]. We emphasize here that this proce-
dure does not give useful results for the usual classical
phase-space representations. However, we will show that
it yields remarkably simple results for both fermionic and
bosonic Gaussian representations.

For the fermionic case, we first evaluate the trace of the
inner product of two un-normalized fermionic operators
F
(

µ,ν
)

= Tr
[

Λu

(

µ
)

Λu (ν)
]

. In this approach, the
physical many-body system is treated as a distribution
over fermionic Green’s functions, whose average are the
observed Green’s function or correlation function.

In order to evaluate the trace we use fermionic coher-
ent states |α〉 in terms of Grassmann variables α[61], as
well as the trace of an operator and the identity opera-
tor of fermionic coherent states. After some Grassmann

calculus, we obtain that the inner product of two un-
normalized fermionic Gaussian operators is:

F
(

µ,ν
)

= det
[

I +
(

I − µ
)

(I − ν)
]

. (6.9)

We rewrite these expressions in terms of the normally
ordered Green’s functions or correlations of the basis sets:

nij = Tr
[

Λ(n)a†iaj

]

. (6.10)

Introducing the hole Green’s functions, ñ = [I− n], and
m̃ = [I−m], we obtain the following result for the nor-
malized inner product of fermionic Gaussian operators:

Tr [Λ(m)Λ(n)] = det [ñm̃+ nm] . (6.11)

Using the result of the trace of the inner product of
fermionic Gaussian operators, Eq. (6.11), we obtain that
the expression for the linear entropy in a Gaussian phase
representation Eq. (6.8) is:

S2 = − ln

¨

P (m)P (n) det [ñm̃+ nm] dmdn . (6.12)

Just as in the case of fermions, we evaluate the inner
product of two un-normalized bosonic Gaussian opera-
tors, B

(

µ,ν
)

= Tr
[

Λu

(

µ
)

Λu (ν)
]

, and after using co-
herent state expansions, we obtain that the inner product
of two un-normalized bosonic Gaussian operators is:

B
(

µ,ν
)

= det
[

I −
(

µ− I
)

(ν − I)
]−1

(6.13)

Similar to the fermionic case, we can rewrite this ex-
pression in terms of the stochastic Green’s functions, and
finally we have that:

S2 = ln

¨

P (m)P (n) det [I+ n+m] dmdn . (6.14)

In summary, using the results of the inner products of
Gaussian operators, we can obtain an expression for the
linear entropy. Since this is just an average over two inde-
pendent probabilities, it is readily calculable using sam-
pled phase-space representations. This expression can
also be used to evaluate the entanglement of a quantum
system with a reservoir or other coupled system.

VII. VARIATIONAL METHODS

While the previous phase-space methods have had a
long history in physics, there is a different approach with
an equally long history, namely the use of variational
techniques. This is a very simple concept, which is that
one should use an evolution equation which minimizes
the error.

The idea was first proposed by Frenkel[62, p436] and
Dirac, who developed early variational methods. In
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Dirac’s original approach, an effective action method was
proposed for a variational wave-function |ψ (t)〉, of the
form:

δΓ = δ

ˆ

dt 〈ψ (t)| [i~∂t −H ] |ψ (t)〉 = 0 (7.1)

This generates a variational Schroedinger equation,
which gives the exact Schroedinger equation in the case
that |ψ (t)〉 is a complete set of wave-functions. In the
usual application of the method, |ψ (t)〉 is chosen as a
specific functional form described by a small number of
free parameters. The properties of this method are that
results depend on the chosen function, and there are a
small number of equations. However, one can’t easily
determine errors, and of course, the method doesn’t con-
verge if |ψ (t)〉 is incomplete.

A. Multiconfigurational methods

More recent applications of the variational
approach[63] have focused on the concept of choos-
ing an expansion for the variational wavefunction that
is complete in some limit. These are typically sums of
individual many-body wavefunctions known as configu-
rations, hence the term multi-configurational approach.
A common approach in the BEC case is to construct the
variational wavefunction from sums of multiply-occupied
Fock states of the form[64]:

|ψ (t)〉 . . . =
∑

~n

C~n (t) a
n1
1 . . . anM

M |0〉 , (7.2)

where the operators a†j are time-dependent operators
such that:

a†j =

ˆ

d3rΨ† (r)φj (r, t) . (7.3)

Compared to the usual variational approach, the strat-
egy used here is to systematically increase the Hilbert
space dimension by increasing the number of modes, with
full convergence expected as M → ∞ . An obvious draw-
back is that, since M is the number of modes, and the
Hilbert space is essentially a standard Fock space, there
is clearly a potential problem with this strategy. There is
an exponential complex Hilbert space dimension as M in-
creases. The result of this problem is that the technique
is currently restricted to one dimension with less than
100 particles, and relatively weak interactions. However,
given this restriction, relatively long interaction times are
possible.

B. Combining phase-space and variational methods

Given the success of phase-space approach in dealing
with complexity, an obvious question is: how can we

Figure 9. What does the multiverse look like? Here we give
an illustration of a quantum ‘universe’ as a superposition of
coherent states, illustrated by the blue circles. Each blue cir-
cle represents a different multi-mode coherent state α

(n) (t),
which has an intrinsic uncertainty. The whole quantum state
or ‘universe’ is a superposition of N coherent states with dif-
ferent phases and amplitudes.

unify variational and coherent states phase-space meth-
ods? Such an approach would have several potential ad-
vantages. Coherent states provide description of long-
range coherence, and in principle are a complete basis.
The usual stochastic method with finite computational
samples can cause a large sampling error. However, the
variational approach can be used to minimize the error.
The goal of such an approach is to combine a high degree
of complexity with relatively long time-scale evolution.

In order to describe the simplest resulting method
of this type, we recall the Wheeler-Everett multiverse
concept[65]. That is, suppose we let |α〉 be a multi-mode
coherent state, then an N component superposition of
coherent states can be considered a ‘multiverse’ - a su-
perposition of N classical worlds. This is parameterized
by a coherent ‘super-vector X ≡

(

α(1), . . .α(N )
)

, where
α = (α0, . . . αM ) is a multi-mode coherent amplitude,
a0 ≡ 1 is the unit operator, and α0 is introduced here as
a combined relative phase and weight parameter, includ-
ing the state normalization factor. The corresponding
quantum state defined as:

|ψ (t)〉 =
N
∑

n=1

eα
(n)(t)·a† |0〉 (7.4)

This is a constrained multiverse, with a fixed number of
copies, shown schematically in Fig (9). One cannot keep
track of all quantum universes! It is also, in quantum
mechanical terms, a superposition of non-orthogonal co-
herent states. We find that the use of a variational princi-
ple introduces interactions between coherent amplitudes.
The advantage is a much lower sampling error compared
to independent stochastic evolution.
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C. Phase-space variational equations

Having introduced the concept, we now wish to derive
the resulting equations[66]. Suppose the Hamiltonian is

H
(

a†, a
)

, with an exact wavefunction
∣

∣

∣
ψ̃
〉

, and a time-

interval ∆t = t− t0, then clearly:
∣

∣

∣
ψ̃ (t)

〉

= e−iH∆t |ψ (t0)〉 . (7.5)

We wish to minimize local propagation error in calculat-
ing the computational result|ψ (t)〉, so that:

δE = δ
∥

∥|ψ (t)〉 − e−iH∆t |ψ (t0)〉
∥

∥

2
= 0. (7.6)

Expanding to first order and taking the limit of ∆t =
t− t0 → 0, gives:

ℜ 〈δψ| [∂t + iH ] |ψ〉 = 0 . (7.7)

We introduce |∆ψ〉 = |ψ (t)〉 − |ψ (t0)〉 and linearize in
the coherent state parameters, so that:

|∆ψ〉 = ∆Xµ
∂ |ψ〉
∂Xµ

(7.8)

The variational principle then leads to a differential equa-
tion for the coherent parameters X, of form:

∂tX = −iV −1H . (7.9)

This means that there are now P ≡ N (M + 1) differ-
ential equations to solve, with a combined index µ, where
the main terms are

• The variational matrix: Vµν =
{

∂
∂Xµ

〈ψ|
}

∂
∂Xν

|ψ〉

• The H-vector: Hµ =
{

∂
∂Xµ

〈ψ|
}

H |ψ (t)〉 .

However, a numerical problem must be treated, which is
that Vµν is generally not invertible, owing to the exis-
tence of multiple minima. We can solve this iteratively,
in terms of the parameter change ∆X[p], where we set
∆X[0] = 0 initially and iterate until a stable solution
is reached. This is similar to the Tikhonov variational
method[67]. In detail, suppose we have a set of varia-
tional parameters X (t0), at time t = t0. We evaluate the
variational matrix and Hamiltonian vector a midpoint
t0+∆t/2, by iterating so that X[p−1] = X (t0)+∆X[p−1],
and setting the change in X to ∆X[p], where:

∆X[p] = ∆X[p−1] +
[

V [p−1] + iλI
]−1

×

×
[

−i∆tH[p−1]/2− V [p−1]∆X[p−1]
]

(7.10)

The final step is to propagate to t0 +∆t by setting:

X (t0 +∆t) = X (t0) + 2∆X[p] , (7.11)

in order to move to the next step in time. This method
leads to stable equations, with no inversion problems.

In the case of a coherent state expansion, we define an
energy matrix:

H(m,n) = H
(

α(m)∗,α(n)
)

, (7.12)

a reduced amplitude:

α̃
(m)
k = δk0 + [1− δk0]α

(m)
k , (7.13)

and an inner product:

ρ(mn) = exp

[

α
(m)∗
0 + α

(m)
0 +

∑

k>0

α
(m)∗
k α

(n)
k

]

. (7.14)

The variational matrix definitions are then:

V
(mn)
kl =

[

[1− δk0] δkl + α̃
(m)∗
l α̃

(n)
k

]

ρ(mn)

H
(m)
k =

∑

n

[

∂H(m,n)

∂α
(m)∗
k

+H(m,n)α̃
(n)
k

]

ρ(mn) . (7.15)

For example, in the case of a single variational term,
one finds equations equivalent to the Gross-Pitaevskii
mean-field equation, with an additional phase evolution
for α0:

∂tα0 = −i
[

H −α† · ∂H/∂α†
]

∂tα = −i∂H/∂α† . (7.16)

For a linear Hamiltonian:

H = a†ωa (7.17)

one finds that each coherent term evolves independently
of each other term, giving:

∂tα
(n)
0 = 0

∂tα
(n) = −iωα(n) . (7.18)

In this case each linear ‘universe’ is decoupled from the
others; this is an exact result, and no approximations are
required.

D. Recurrences in the anharmonic oscillator

Finally, we consider the case of a quantum anharmonic
oscillator, which describes local S-wave scattering inter-
actions at a single lattice site, so that:

H = a†2a2 (7.19)

This is an extremely strong test of coherent state
expansion methods. From an initial coherent state



14

0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

2

t 

X

Figure 10. Anharmonic recurrence, x quadrature. Blue
dashed line has 8 components, green solid line has 16 com-
ponents. This is almost indistinguishable from the the exact
solution, which is a red dashed line.

the quantum evolution generates Schroedinger cat su-
perpositions, with complete recurrences known to oc-
cur analytically[68], as well as experimentally [69].
Variational results showing almost error-free dynamics
throughout the Schroedinger-cat regime of t = π, and
a complete recurrence at t = 2π are shown in the fig-
ures. For these numerical results, we used λ = 10−4 to
control the matrix inversion, with four iterations of the
variational equations at each time point.

Here we define quadrature variables,

X =
〈

a+ a†
〉

/2 (7.20)

and

Y =
〈

a− a†
〉

/(2i) (7.21)

The exact result, given an initial coherent state, is
known to have recurrences in both quadratures, as shown
in the graphs.

While it is simple enough to be analytically soluble,
this Hamiltonian would lead to large errors with stochas-
tic phase-space techniques over time-scales comparable
to the recurrence time. As we show in Figs (10) and
(11), the use of a variational method allows us to track
the full recurrence, on timescales where any previous
stochastic phase-space method would give very large er-
rors [51, 70, 71]. Variational convergence is rapid, with
only small errors visible using N = 8 components. These

are almost completely eliminated by using N = 16 coher-
ent components. This illustrative example is very simple,
and indeed the case treated here can be solved exactly
using analytic techniques. However, it does illustrate the
utility of variational methods in reducing sampling error
in phase-space simulations.
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Figure 11. Anharmonic recurrence, y quadrature. Parameters
as in the previous figure. The blue dashed line with small
oscillations is not quite converged, while the solid green line
shows excellent convergence to the exact result.

VIII. OUTLOOK AND SUMMARY

In summary, there are a growing number of experi-
ments in ultra-cold atomic physics that probe the world
of quantum dynamics. Simple, exact results are only pos-
sible with a small number of interacting modes. Larger,
complex quantum systems require new techniques to han-
dle the issue of exponential complexity. While phase-
space representations using non-orthogonal basis sets can
can treat highly complex problems, there is often a prob-
lem with truncations (in the Wigner case) or sampling
errors that grow in time (in the positive-P case).

We have shown that there are newer techniques that
have much promise. Gaussian phase-space methods are
much more general, and can treat new issues like fermions
and entropy calculations. Finally, we have derived a
Tikhonov-based variational approach which is shown to
dramatically reduce sampling errors in a case which is
known to be challenging to handle with phase-space
methods. This approach gives exact results for linear
couplings. It has lower sampling errors than the stochas-
tic +P method, as well as reduced variational complexity
issues compared to multi-configurational approaches in a
Fock space basis. While the techniques given here are
only preliminary, this hybrid variational and phase-space
approach appears promising for future developments.
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